Minimizing SLA violation and power consumption in Cloud data centers using adaptive energy-aware algorithms
نویسندگان
چکیده
In this paper, we address the problem of reducing Cloud datacenter high energy consumption with minimal Service Level Agreement (SLA) violation. Although there are many energy-aware resource management solutions for Cloud datacenters, existing approaches focus on minimizing energy consumption while ignoring the SLA violation at the time of virtual machine (VM) deployment. Also, they do not consider the types of application running in the VMs and thus may not really reduce energy consumption with minimal SLA violation under a variety of workloads. In this paper, we propose two novel adaptive energy-aware algorithms for maximizing energy efficiency and minimizing SLA violation rate in Cloud datacenters. Unlike the existing approaches, the proposed energy-aware algorithms take into account the application types as well as the CPU and memory resources during the deployment of VMs. To study the efficacy of the proposed approaches, we performed extensive experimental analysis using real-world workload, which comes from more than a thousand PlanetLab VMs. The experimental results show that, compared with the existing energy-saving techniques, the proposed approaches can effectively decrease the energy consumption in Cloud datacenters while maintaining low SLA violation. © 2017 Elsevier B.V. All rights reserved. * Corresponding author. E-mail addresses: [email protected] (Z. Zhou), [email protected] (J. Abawajy), [email protected] (M. Chowdhury), [email protected] (Z. Hu), [email protected] (K. Li), [email protected] (H. Cheng), [email protected] (A.A. Alelaiwi), [email protected] (F. Li).
منابع مشابه
Energy Aware Resource Management of Cloud Data Centers
Cloud Computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT industry, making software even more attractive as a service and shaping the way IT hardware is designed and purchased. Virtualization technology forms a key concept for new cloud computing architectures. The data centers are used to provide cloud services burdening a significant...
متن کاملVM Consolidation by using Selection and Placement of VMs in Cloud Datacenters
The Cloud Computing model leverages virtualization of computing resources allowing customers to provision resources on-demand on a pay-as-you-go basis. During recent years, the power consumption of datacenters in cloud environment attracted researchers. Optimization of energy consumption can be performed by different methods including virtual machine (VM) consolidation. This technique can reduc...
متن کاملVirtual Machine Placement Algorithm for Both Energy-Awareness and SLA Violation Reduction in Cloud Data Centers
The problem of high energy consumption is becoming more and more serious due to the construction of large-scale cloud data centers. In order to reduce the energy consumption and SLA violation, a new virtual machine (VM) placement algorithm named ATEA (adaptive three-threshold energy-aware algorithm), which takes good use of the historical data from resource usage by VMs, is presented. In ATEA, ...
متن کاملWorkload Consolidation using VM Selection and Placement Techniques in Cloud Computing
Cloud computing provides a consumer pay-per-use computing model over the Internet using numerous data centers across the globe. Power consumption by the huge data centers in Cloud environment has attracted the attention of research community. Efficient usage of energy in Cloud can be addressed in many facets. Virtual Machine (VM) consolidation is one of the techniques to save or reduce energy i...
متن کاملPower-Aware Virtual Machine Scheduling-policy for Virtualized Heterogeneous Multicore Systems
This paper presents a systematic approach to correctly provision server resources in data centers, resulting in minimum energy consumption and SLA violations. In particular, we describe a hybrid method for efficient server provisioning in virtualized heterogeneous multicore Cloud data centers. The objective is to place VMs on host while keeping total utilization of CPU below defined threshold a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017